Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Modeling of transitions in Mn2+ doped ZnS nanocrystals and predicting reduced lasing threshold current density and enhanced electro-optic effects in ZnCdSe-ZnMgSSe and InGaN-AlGaN pseudomorphic quantum dots

Identifieur interne : 014271 ( Main/Repository ); précédent : 014270; suivant : 014272

Modeling of transitions in Mn2+ doped ZnS nanocrystals and predicting reduced lasing threshold current density and enhanced electro-optic effects in ZnCdSe-ZnMgSSe and InGaN-AlGaN pseudomorphic quantum dots

Auteurs : RBID : Pascal:99-0099152

Descripteurs français

English descriptors

Abstract

A three-dimensional coupled-well excitonic model is presented to explain the observed shift in the photoluminescence excitation spectrum, emission peak from Mn2+ ions, and five-to-six orders reduction of radiative lifetime in ZnS:Mn2+(35 Å) doped nanocrystals. For pseudomorphic cladded nanocrystals such as ZnCdSe-ZnMgSSe, a modified excitonic model predicts enhancements in the absorption coefficient (α∼160000 cm-1) and electric field-dependent index of refraction change (Δn/n∼0.1-0.2), and a significant reduction of radiative lifetime τr∼14.5 fs. Optical gain and threshold current density (Jth) are computed for ZnCdSe-ZnMgSSe and InGaN-AlGaN quantum dot lasers. In the case of InGaN-AlGaN quantum dot lasers, the effect of dislocation-induced traps, enhancement of optical gain due to excitonic transitions, and dot size are considered in the computation of Jth. It is shown that InGaN dots with larger cross sections (∼200×250 Å, such as self-organized dots) and consisting of a trap density of 2.9×1017cm-3 yield Jth of 4500 A/cm2 in comparison to 136 A/cm2 for dots of size 35×35×35 Å. This explains the observation of higher current density in InGaN quantum well lasers having self-organized dots. © 1999 American Institute of Physics.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:99-0099152

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Modeling of transitions in Mn
<sup>2+</sup>
doped ZnS nanocrystals and predicting reduced lasing threshold current density and enhanced electro-optic effects in ZnCdSe-ZnMgSSe and InGaN-AlGaN pseudomorphic quantum dots</title>
<author>
<name sortKey="Jain, F" uniqKey="Jain F">F. Jain</name>
<affiliation wicri:level="2">
<inist:fA14 i1="01">
<s1>Electrical and Systems Engineering Department, University of Connecticut, Storrs, Connecticut 06269-2157</s1>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</inist:fA14>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Connecticut</region>
</placeName>
<wicri:cityArea>Electrical and Systems Engineering Department, University of Connecticut, Storrs</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Huang, W" uniqKey="Huang W">W. Huang</name>
<affiliation wicri:level="2">
<inist:fA14 i1="01">
<s1>Electrical and Systems Engineering Department, University of Connecticut, Storrs, Connecticut 06269-2157</s1>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</inist:fA14>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Connecticut</region>
</placeName>
<wicri:cityArea>Electrical and Systems Engineering Department, University of Connecticut, Storrs</wicri:cityArea>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">99-0099152</idno>
<date when="1999-03-01">1999-03-01</date>
<idno type="stanalyst">PASCAL 99-0099152 AIP</idno>
<idno type="RBID">Pascal:99-0099152</idno>
<idno type="wicri:Area/Main/Corpus">015950</idno>
<idno type="wicri:Area/Main/Repository">014271</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">0021-8979</idno>
<title level="j" type="abbreviated">J. appl. phys.</title>
<title level="j" type="main">Journal of applied physics</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Absorption coefficients</term>
<term>Cadmium compounds</term>
<term>Current density</term>
<term>Dislocations</term>
<term>Electro-optical effects</term>
<term>Excitons</term>
<term>Gallium compounds</term>
<term>II-VI semiconductors</term>
<term>III-V semiconductors</term>
<term>Indium compounds</term>
<term>Magnesium compounds</term>
<term>Manganese</term>
<term>Nanostructured materials</term>
<term>Photoluminescence</term>
<term>Quantum well lasers</term>
<term>Radiative lifetimes</term>
<term>Semiconductor quantum dots</term>
<term>Spectral shift</term>
<term>Theoretical study</term>
<term>Zinc compounds</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>7866H</term>
<term>4255P</term>
<term>7855C</term>
<term>7866F</term>
<term>7855E</term>
<term>7135C</term>
<term>7820J</term>
<term>7320D</term>
<term>7820C</term>
<term>Etude théorique</term>
<term>Densité courant</term>
<term>Point quantique semiconducteur</term>
<term>Laser puits quantique</term>
<term>Semiconducteur III-V</term>
<term>Semiconducteur II-VI</term>
<term>Nanomatériau</term>
<term>Zinc composé</term>
<term>Cadmium composé</term>
<term>Magnésium composé</term>
<term>Exciton</term>
<term>Durée vie radiative</term>
<term>Déplacement spectral</term>
<term>Photoluminescence</term>
<term>Coefficient absorption</term>
<term>Dislocation</term>
<term>Indium composé</term>
<term>Gallium composé</term>
<term>Effet électrooptique</term>
<term>Manganèse</term>
</keywords>
<keywords scheme="Wicri" type="concept" xml:lang="fr">
<term>Manganèse</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">A three-dimensional coupled-well excitonic model is presented to explain the observed shift in the photoluminescence excitation spectrum, emission peak from Mn
<sup>2+</sup>
ions, and five-to-six orders reduction of radiative lifetime in ZnS:Mn
<sup>2+</sup>
(35 Å) doped nanocrystals. For pseudomorphic cladded nanocrystals such as ZnCdSe-ZnMgSSe, a modified excitonic model predicts enhancements in the absorption coefficient (α∼160000 cm
<sup>-1</sup>
) and electric field-dependent index of refraction change (Δn/n∼0.1-0.2), and a significant reduction of radiative lifetime τ
<sub>r</sub>
∼14.5 fs. Optical gain and threshold current density (J
<sub>th</sub>
) are computed for ZnCdSe-ZnMgSSe and InGaN-AlGaN quantum dot lasers. In the case of InGaN-AlGaN quantum dot lasers, the effect of dislocation-induced traps, enhancement of optical gain due to excitonic transitions, and dot size are considered in the computation of J
<sub>th</sub>
. It is shown that InGaN dots with larger cross sections (∼200×250 Å, such as self-organized dots) and consisting of a trap density of 2.9×10
<sup>17</sup>
cm
<sup>-3</sup>
yield J
<sub>th</sub>
of 4500 A/cm
<sup>2</sup>
in comparison to 136 A/cm
<sup>2</sup>
for dots of size 35×35×35 Å. This explains the observation of higher current density in InGaN quantum well lasers having self-organized dots. © 1999 American Institute of Physics.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0021-8979</s0>
</fA01>
<fA02 i1="01">
<s0>JAPIAU</s0>
</fA02>
<fA03 i2="1">
<s0>J. appl. phys.</s0>
</fA03>
<fA05>
<s2>85</s2>
</fA05>
<fA06>
<s2>5</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Modeling of transitions in Mn
<sup>2+</sup>
doped ZnS nanocrystals and predicting reduced lasing threshold current density and enhanced electro-optic effects in ZnCdSe-ZnMgSSe and InGaN-AlGaN pseudomorphic quantum dots</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>JAIN (F.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>HUANG (W.)</s1>
</fA11>
<fA14 i1="01">
<s1>Electrical and Systems Engineering Department, University of Connecticut, Storrs, Connecticut 06269-2157</s1>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</fA14>
<fA20>
<s1>2706-2712</s1>
</fA20>
<fA21>
<s1>1999-03-01</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>126</s2>
</fA43>
<fA44>
<s0>8100</s0>
<s1>© 1999 American Institute of Physics. All rights reserved.</s1>
</fA44>
<fA47 i1="01" i2="1">
<s0>99-0099152</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i2="1">
<s0>Journal of applied physics</s0>
</fA64>
<fA66 i1="01">
<s0>USA</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>A three-dimensional coupled-well excitonic model is presented to explain the observed shift in the photoluminescence excitation spectrum, emission peak from Mn
<sup>2+</sup>
ions, and five-to-six orders reduction of radiative lifetime in ZnS:Mn
<sup>2+</sup>
(35 Å) doped nanocrystals. For pseudomorphic cladded nanocrystals such as ZnCdSe-ZnMgSSe, a modified excitonic model predicts enhancements in the absorption coefficient (α∼160000 cm
<sup>-1</sup>
) and electric field-dependent index of refraction change (Δn/n∼0.1-0.2), and a significant reduction of radiative lifetime τ
<sub>r</sub>
∼14.5 fs. Optical gain and threshold current density (J
<sub>th</sub>
) are computed for ZnCdSe-ZnMgSSe and InGaN-AlGaN quantum dot lasers. In the case of InGaN-AlGaN quantum dot lasers, the effect of dislocation-induced traps, enhancement of optical gain due to excitonic transitions, and dot size are considered in the computation of J
<sub>th</sub>
. It is shown that InGaN dots with larger cross sections (∼200×250 Å, such as self-organized dots) and consisting of a trap density of 2.9×10
<sup>17</sup>
cm
<sup>-3</sup>
yield J
<sub>th</sub>
of 4500 A/cm
<sup>2</sup>
in comparison to 136 A/cm
<sup>2</sup>
for dots of size 35×35×35 Å. This explains the observation of higher current density in InGaN quantum well lasers having self-organized dots. © 1999 American Institute of Physics.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B70H66H</s0>
</fC02>
<fC02 i1="02" i2="3">
<s0>001B40B55P</s0>
</fC02>
<fC02 i1="03" i2="3">
<s0>001B70H55C</s0>
</fC02>
<fC02 i1="04" i2="3">
<s0>001B70H66F</s0>
</fC02>
<fC02 i1="05" i2="3">
<s0>001B70H55E</s0>
</fC02>
<fC02 i1="06" i2="3">
<s0>001B70A35</s0>
</fC02>
<fC02 i1="07" i2="3">
<s0>001B70H20J</s0>
</fC02>
<fC02 i1="08" i2="3">
<s0>001B70C20D</s0>
</fC02>
<fC02 i1="09" i2="3">
<s0>001B70H20C</s0>
</fC02>
<fC03 i1="01" i2="3" l="FRE">
<s0>7866H</s0>
<s2>PAC</s2>
<s4>INC</s4>
</fC03>
<fC03 i1="02" i2="3" l="FRE">
<s0>4255P</s0>
<s2>PAC</s2>
<s4>INC</s4>
</fC03>
<fC03 i1="03" i2="3" l="FRE">
<s0>7855C</s0>
<s2>PAC</s2>
<s4>INC</s4>
</fC03>
<fC03 i1="04" i2="3" l="FRE">
<s0>7866F</s0>
<s2>PAC</s2>
<s4>INC</s4>
</fC03>
<fC03 i1="05" i2="3" l="FRE">
<s0>7855E</s0>
<s2>PAC</s2>
<s4>INC</s4>
</fC03>
<fC03 i1="06" i2="3" l="FRE">
<s0>7135C</s0>
<s2>PAC</s2>
<s4>INC</s4>
</fC03>
<fC03 i1="07" i2="3" l="FRE">
<s0>7820J</s0>
<s2>PAC</s2>
<s4>INC</s4>
</fC03>
<fC03 i1="08" i2="3" l="FRE">
<s0>7320D</s0>
<s2>PAC</s2>
<s4>INC</s4>
</fC03>
<fC03 i1="09" i2="3" l="FRE">
<s0>7820C</s0>
<s2>PAC</s2>
<s4>INC</s4>
</fC03>
<fC03 i1="10" i2="3" l="FRE">
<s0>Etude théorique</s0>
</fC03>
<fC03 i1="10" i2="3" l="ENG">
<s0>Theoretical study</s0>
</fC03>
<fC03 i1="11" i2="3" l="FRE">
<s0>Densité courant</s0>
</fC03>
<fC03 i1="11" i2="3" l="ENG">
<s0>Current density</s0>
</fC03>
<fC03 i1="12" i2="3" l="FRE">
<s0>Point quantique semiconducteur</s0>
</fC03>
<fC03 i1="12" i2="3" l="ENG">
<s0>Semiconductor quantum dots</s0>
</fC03>
<fC03 i1="13" i2="3" l="FRE">
<s0>Laser puits quantique</s0>
</fC03>
<fC03 i1="13" i2="3" l="ENG">
<s0>Quantum well lasers</s0>
</fC03>
<fC03 i1="14" i2="3" l="FRE">
<s0>Semiconducteur III-V</s0>
</fC03>
<fC03 i1="14" i2="3" l="ENG">
<s0>III-V semiconductors</s0>
</fC03>
<fC03 i1="15" i2="3" l="FRE">
<s0>Semiconducteur II-VI</s0>
</fC03>
<fC03 i1="15" i2="3" l="ENG">
<s0>II-VI semiconductors</s0>
</fC03>
<fC03 i1="16" i2="3" l="FRE">
<s0>Nanomatériau</s0>
</fC03>
<fC03 i1="16" i2="3" l="ENG">
<s0>Nanostructured materials</s0>
</fC03>
<fC03 i1="17" i2="3" l="FRE">
<s0>Zinc composé</s0>
</fC03>
<fC03 i1="17" i2="3" l="ENG">
<s0>Zinc compounds</s0>
</fC03>
<fC03 i1="18" i2="3" l="FRE">
<s0>Cadmium composé</s0>
</fC03>
<fC03 i1="18" i2="3" l="ENG">
<s0>Cadmium compounds</s0>
</fC03>
<fC03 i1="19" i2="3" l="FRE">
<s0>Magnésium composé</s0>
</fC03>
<fC03 i1="19" i2="3" l="ENG">
<s0>Magnesium compounds</s0>
</fC03>
<fC03 i1="20" i2="3" l="FRE">
<s0>Exciton</s0>
</fC03>
<fC03 i1="20" i2="3" l="ENG">
<s0>Excitons</s0>
</fC03>
<fC03 i1="21" i2="3" l="FRE">
<s0>Durée vie radiative</s0>
</fC03>
<fC03 i1="21" i2="3" l="ENG">
<s0>Radiative lifetimes</s0>
</fC03>
<fC03 i1="22" i2="3" l="FRE">
<s0>Déplacement spectral</s0>
</fC03>
<fC03 i1="22" i2="3" l="ENG">
<s0>Spectral shift</s0>
</fC03>
<fC03 i1="23" i2="3" l="FRE">
<s0>Photoluminescence</s0>
</fC03>
<fC03 i1="23" i2="3" l="ENG">
<s0>Photoluminescence</s0>
</fC03>
<fC03 i1="24" i2="3" l="FRE">
<s0>Coefficient absorption</s0>
</fC03>
<fC03 i1="24" i2="3" l="ENG">
<s0>Absorption coefficients</s0>
</fC03>
<fC03 i1="25" i2="3" l="FRE">
<s0>Dislocation</s0>
</fC03>
<fC03 i1="25" i2="3" l="ENG">
<s0>Dislocations</s0>
</fC03>
<fC03 i1="26" i2="3" l="FRE">
<s0>Indium composé</s0>
</fC03>
<fC03 i1="26" i2="3" l="ENG">
<s0>Indium compounds</s0>
</fC03>
<fC03 i1="27" i2="3" l="FRE">
<s0>Gallium composé</s0>
</fC03>
<fC03 i1="27" i2="3" l="ENG">
<s0>Gallium compounds</s0>
</fC03>
<fC03 i1="28" i2="3" l="FRE">
<s0>Effet électrooptique</s0>
</fC03>
<fC03 i1="28" i2="3" l="ENG">
<s0>Electro-optical effects</s0>
</fC03>
<fC03 i1="29" i2="3" l="FRE">
<s0>Manganèse</s0>
<s2>NC</s2>
</fC03>
<fC03 i1="29" i2="3" l="ENG">
<s0>Manganese</s0>
<s2>NC</s2>
</fC03>
<fN21>
<s1>053</s1>
</fN21>
<fN47 i1="01" i2="1">
<s0>9907M000152</s0>
</fN47>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Main/Repository
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 014271 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Repository/biblio.hfd -nk 014271 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Main
   |étape=   Repository
   |type=    RBID
   |clé=     Pascal:99-0099152
   |texte=   Modeling of transitions in Mn2+ doped ZnS nanocrystals and predicting reduced lasing threshold current density and enhanced electro-optic effects in ZnCdSe-ZnMgSSe and InGaN-AlGaN pseudomorphic quantum dots
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024